Evolutionary design on a budget: robustness and
optimality of bacteriophage T7
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Abstract: Exploring how biological systems have been ‘designed’ by evolution to achieve robust
behaviours is now a subject of increasing research effort. Yet, it still remains unclear how
environmental factors may contribute to this process. This issue is addressed by employing a
detailed computer model for the intracellular growth of phage T7. More than 150 000 in silico
T7 mutants were generated and the rates and efficiencies of their growth in two host environments,
namely, a realistic environment that offered finite host resources for the synthesis of phage
functions and a hypothetical environment where the phage was supplied infinite host resources,
were evaluated. Results revealed two key properties of phage T7. First, T7 growth was overall
robust with respect to perturbations in its parameters, but fragile with respect to changes in the
ordering of its genetic elements. Secondly, the wild-type T7 had close to optimal fitness in the
finite environment. Furthermore, a strong correlation was found between fitness and growth
efficiency in the finite environment. The results underscore the potential importance of the
environment in shaping robust design of a biological system. In particular, the strong correlation
between fitness and growth efficiency suggests that T7 may have evolved to maximise its

growth rate by minimising waste of finite resources.

1 Introduction

Recent computational and experimental studies have begun
to reveal system-level properties of diverse cellular systems
[1-10]. An often characterised property is the robustness
of these systems, which can be defined as the stability of
a phenotype in the presence of genetic and environmental
variations [11].

Using a detailed kinetic model, Barkai and Leibler
analysed how the output of a chemotaxis network would
respond to perturbations in the kinetic parameters that
define the network behaviour [12]. Their simulations
demonstrated that some properties of the network, such as
precision of adaptation, are robust to parametric pertur-
bations. Key findings of this computational study were
later verified by experiments [13]. They also noted that
not all properties are robust to all parameters. For
example, the adaptation time and the steady-state tumbling
frequency of the network were found to be sensitive to
perturbations in parameters [12]. From a system control
perspective, Yi et al. [14] showed that the robustness of
the chemotaxis network can be attributed to an integral
feedback loop embedded in the network. It has been
argued that the robustness might be a generic feature
necessary to ensure proper functioning of a wide variety
of biological systems [12]. This argument was extended
by Morohashi et al. [15] who suggested that the robustness
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to variations could be used as a measure of the plausibility
of the models of a given system.

These arguments have gained support from recent model-
ling and experimental studies. A network model for seg-
mentation in Drosophila demonstrated robust features: the
model was able to predict the correct segmentation
pattern for a wide range of parameter settings [16]. The
same group later found that another system — the
Drosophila neurogenic network — also demonstrated
significant robustness with respect to network parameters
[17]. Furthermore, computational [18—20] and experimen-
tal [21] studies have suggested that circadian clocks often
demonstrate robust behaviour with respect to intrinsic or
external perturbations. From another perspective, robust
performance has become a central design goal of synthetic
gene circuits, where efforts are being made to counteract
the effect of cellular noise on circuit function [22], for
example, using negative feedback control [23] or cell—cell
communication [24, 25].

In addition to intrinsic organisation of a cellular network,
the environment may play a role in determining the perform-
ance of the network. It has been established that there is
complex interplay between the genotype of an organism
and its environment [26, 27]. Computational analyses have
provided insight into the understanding of such interactions
at the cellular level. The demand theory proposed by
Savageau [28, 29] suggests that bacterial operons regulated
by repressors are selected for in low-demand environments,
whereas those regulated by activators are selected for in
high-demand environments [7, 28]. These predictions have
been found to agree well with experimental observations
[29]. In addition, recent work suggests that the evolution
of gene expression in the yeast Saccharomyces cerevisiae
is constrained by associated cost of energy consumption
[30]. Complementary to these, we showed by simulation
that growth environments of an organism can significantly
impact the nature and degree of the genetic interactions
among different deleterious mutations [31].
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By simulating and characterising growth of hundreds of
thousands of in silico T7 mutants, we show here that the
environment may play an important role in shaping not
only the activities of discrete biochemical functions, but
also the regulatory network of interactions that underlie
the development of an organism. Specifically, we examine
effects of different perturbations in the context of two
growth environments: one corresponds to a realistic host
cell that has finite resources and the other represents a
hypothetical host cell with infinite resources. Our results
indicate that the wild-type T7 is close to optimal in terms
of its growth rate in the finite-resource environment but
not in the infinite environment. Furthermore, our results
suggest that T7 possesses a ‘robust-yet-fragile’ property, a
common feature of biological and advanced engineering
systems [32-34].

2 Materials and methods
2.1 Phage T7 model

By accounting for and incorporating existing experimental
data and mechanisms, Endy et al. [35] developed a geneti-
cally structured model to simulate the infection of a
Escherichia coli cell by a wild-type T7 particle. The
current model recasts previous versions using an object-
oriented approach [36]. It treats the genome as an array of
74 genetic elements, where each element consists of one
or more overlapping genes, promoters, transcription termin-
ators, RNase III processing sites and spacer DNAs. It
accounts for the mechanisms of the entry of T7 DNA into
the host cell, synthesis of T7 mRNAs and proteins, regu-
lation of T7 gene expression, degradation of host DNA
and replication of T7 DNA, assembly of procapsids and for-
mation of T7 progeny. It also extends earlier versions by
accounting for the stoichiometric relation of the T7 heli-
case/primase (gp4A) and the DNA polymerase (gp5) in
forming replication complexes, or replisomes, as well as
the stoichiometric balance between the number of replica-
tion complexes and the maximum number of replication
forks that can form on the newly synthesised T7 genomes.
In addition, it allocates E. coli RNA polymerases
(EcRNAPs) and T7 RNA polymerases (T7RNAPs) to the
synthesis of different mRNAs based on the relative activi-
ties of the promoters. Further, the current model has been
sufficiently generalised to enable simulation of the growth
of T7 mutants with re-ordered genomes [37] and to
account for effects of host physiological state on T7
growth [36]. Detailed implementation of the model is
described in Supplemental Online Materials (SOM),
adapted from You [38]. The computer code for the model
is available at http://www.duke.edu/~you. Analysis of the
simulation output was done in MATLAB (MathWorks,
Inc.).

2.2 Fitness and growth efficiency

We define fitness (F) as the maximum production rate of
progeny during T7 intracellular growth, as follows

Q)

f ph rticl
F = max num.ber of p zflge pé icles
time after infection ,

where the subscript 7 indicates that the maximum value was
taken over the entire course of simulation. This simple
metric quantifies the effectiveness of a given T7 variant in
producing progeny during one cycle of infection. F
always reaches maximum at the time point where the
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number of progeny reaches maximum (data not shown). It
is an appropriate measure of T7 fitness, if T7 lyses the
host cell at this time point. Under most conditions, it
increases with several other metrics such as rise rate [36],
maximum doubling rate [37] or burst size [31]. For instance,
if all T7 variants reach their maximum number of progeny
at the same time point, the maximum growth rate will be
proportional to the burst size. Each metric is more
appropriate in measuring the potential ‘success’ of a T7
variant in different settings, but use of these alternatives
does not change the main conclusions of this article.

To further access effects of environments, we define the
efficiency (£) of T7 growth by

E = max

amino acids incorporated into progeny
amino acids incorporated into particle proteins/,

(@)

where the subscript ¢ has the same meaning as in (1). We
have focused on only one aspect of growth efficiency: the
above function measured how efficiently the virus was
able to balance the production of different viral proteins.
In a ‘perfectly’ efficient virus, all particle proteins will be
produced following the stoichiometry by which they are
incorporated in the progeny (Table S5). Deviation from
this stoichiometry will result in ‘waste’ of resources and
thus decrease the efficiency. Similar efficiency metrics can
be defined for other processes, for example, efficiency in
the consumption of energy or metabolites [39].

2.3 In silico mutations

Every in silico T7 mutant contains one of the following two
types of perturbations: changes to one or more parameters
that define T7 physiology or reordering of genetic elements
along the T7 genome. In the former case, up to 30 par-
ameters were varied within a range from 0.1 to 10 times
their base values while the other parameters were kept con-
stant. These parameters included relative activities of six
EcRNAP promoters (Al, A2, A3, B, C and E), relative
activities of 15 T7RNAP promoters (1.1A, 1.1B, 1.3, 1.5,
1.6, 2.5, 3.8, 4C, 43, 4.7, 6.5, 9, 10, 13 and 17), the
T7RNAP elongation rate (kpt7), the T7 DNA polymerase
elongation rate (kpp), the T7 procapsid assembly rate con-
stant (k,), the T7 DNA packaging rate (kpack), the gp0.7-
EcRNAP association constant (K;), the gp2-EcRNAP
association constant (K,), the T7TRNAP-gp3.5 association
constant (K3), the degradation rate constants of T7
mRNAs (k4m) and T7 proteins (kq,). Base values of these
parameters were presented previously [31] and detailed
in SOM.

To simulate mutants that carried multiple mutations, we
generated 50 000 T7 mutants that each had random values
for 28 of the 30 parameters listed earlier. A random value
was selected within the range from 0.1 to 10 times the
base value of the corresponding parameter following a
uniform distribution on a logarithmic scale. As the relative
activities of promoters were used as weighting factors for
distributing EcCRNAPs or T7RNAPs, it is unnecessary to
change all promoter activities simultaneously. For either
the host or T7 RNAP, we kept one promoter activity
constant while changing the others. Specifically, we held
constant the relative activities of promoter 10 (for
T7RNAP) and promoter Al (for ECRNAP).

Because gene expression in T7 growth is coupled with
transcription-mediated entry of the T7 genome [40], relocating
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a T7 genetic element within the genome can affect the
timing of expression for some genes. To characterise this
effect, we generated 100 000 T7 mutants by randomly
permuting the 72 internal elements of the T7 genome,
and then characterised their growth. The permutation
space is astronomically huge: the total number of possible
permuted genomes is 72! ~ 6 x 10'*, and the 100 000
mutants accounted for only an infinitesimally small
sampling of the entire space. Nevertheless, they seemed
sufficient to give a representative view; the distribution of
growth rates remained similar overall for sample sizes
above 10 000.

2.4 Host environments

Each T7 mutant (generated by parametric or gene-order
perturbation) was characterised in two contrasting host-
resource environments: a finite environment and an infinite
environment. As shown in Table 1, the host physiological
parameters that define the finite environment correspond
to a host cell growing at 1.0 doublings/h [36]. The infinite
environment offers infinite levels of ECRNAPs, ribosomes,
NTPs, amino acids and DNA contents in the cell (see
Table S1 for more information and additional references).

3 Results

Overall, T7 seemed robust with respect to single-parameter
perturbations (Fig. 1): all T7 mutants were viable in both
environments in the presence of up to 10-fold deviation
for each of the selected parameters from its base value.
Some mutants even grew faster than the wild-type, particu-
larly in the infinite environment. For example, a decrease in
the mRNA decay rate constant (kg,,) or an increase in the
T7RNAP elongation rate (kpr;) caused a significant
increase in the T7 growth rate (Fig. 1d). These results
make intuitive sense. For example, a slower mRNA degra-
dation would lead to overall faster mRNA accumulation,
which in turn would lead to faster protein production, and
eventually faster T7 progeny production.

Growth of 50 000 randomly generated mutants, each of
which contained 28 independent random mutations,
yielded further evidence for the overall robustness of T7
with respect to its parameters (Fig. 2). All 50 000 mutants
were viable in the infinite environment and 99.95%
(49976) were viable in the finite environment. We
defined growth rate normalised to the growth rate under
base-case conditions. In the infinite environment, ~24%
(11 983) of the mutants grew faster than the wild-type,
with an average growth rate of 0.98 and a maximum
growth rate of ~44. In contrast, only 5.3% (2657) outper-
formed the wild-type in the finite environment. In this
case, the average and the maximum growth rates were
0.51 and 1.7, respectively, again highlighting the optimality
of the wild-type relative to the mutants.

Table 1: Two host environments for T7 development
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Fig. 1 The sensitivity of T7 growth rate to T7 promoter strengths
(a, b) and selected kinetic parameters (c, d) for the finite host
environment (a, c) and the infinite host environment (b, d)

The x-axis represents parameters normalised with respect to their
base-case values. The y-axes indicate the corresponding growth rate
calculated for the chosen parameters. Growth rates were normalised
with respect to the values calculated from the base-case parameter
setting for either environment. Along each curve one parameter is
varied while the others were kept constant. The base case is indicated
by a filled circle

Compared with changes in kinetic parameters, random
permutations of the genome organisation had much stron-
ger, primarily deleterious effects on T7 growth (Fig. 3).
More than 80% of 100000 T7 mutants with random
genomes failed to grow in either the finite environment
(83 663 dead) or the infinite environment (82 414 dead).
In the finite environment, no mutants grew faster than the
wild-type, and the maximum growth rate was only about
97% the wild-type value. In contrast, 4915 of the viable
mutants in the infinite environment grew faster than the
wild-type, with the maximum growth rate about 7-fold
greater than the wild-type value.

To gain insight into how random perturbations may affect
T7 performance, we examined the efficiency of the 150 000
T7 random mutants in balancing the production of viral
proteins. For both types of random mutants, there was a
stronger correlation between growth rates and efficiency
in the finite environment than in the infinite environment
(Figs. 4 and 5).

# mutants

0 0.5 1 1.5 10 20 30 40
growth rate growth rate
a b

Fig. 2 Distribution of growth rates for 50 000 T7 mutants, each
with 28 independent random mutations

a Finite host environment

b Infinite host environment

The mutants that grow faster than the wild-type are shown in the
shaded part of the distribution

IEE Proc.-Syst. Biol., Vol. 153, No. 2, March 2006



-
o
-

(=}

™

# mutants
o
5}
o

-

o
G

(=)

o

0.5 1 0 2 4 6
growth rate growth rate
a b

Fig. 3 Distribution of growth rates for 100 000 mutants with
randomly permutated genome

a Finite host environment

b Infinite host environment

In both cases, the number of non-viable phage is indicated by a filled
square at the zero-growth rate. The mutants that grow faster than wild-
type T7 are shown in the shaded part of the distribution

4 Discussion
4.1 Robustness and fragility

Our results suggest that T7 is overall robust with respect to
single or multiple perturbations in its parameters (Figs. 1
and 2). The vast majority of these T7 mutants are viable
and many grew faster than the wild-type. In contrast, T7
is fragile to drastic perturbations in its genome structure:
random permutations of the T7 genome are fatal in
greater than 80% of the cases studied, regardless of the
growth environment (Fig. 3). The detrimental effects are
more pronounced in the finite environment, where none of
the 100 000 mutants can grow as fast as the wild-type. In

growth rate

0.5 1
efficiency
a

40

30

efficiency
b

Fig. 4 Correlation of growth rates and efficiency for the 50 000
mutants with random parameter values

a Finite host environment

b Infinite host environment

Each dot represents a mutant. Both efficiency and growth rates were
normalised with respect to the corresponding wild-type values. A
linear fit (indicated by lines) gives an R“ value of 0.58 (finite environ-
ment) and 0.18 (infinite environment). The wild-type is indicated by a
star asterisk symbol
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the infinite environment, however, about 5% of mutants
grow faster than the wild-type, though the effect of
random genome shuffling is overwhelmingly deleterious.
Fragility of T7 with respect to random shuffling of genetic
elements makes intuitive sense. T7 genome entry is
mediated by ECRNAP after the first 850 bp enters the host
cell [41, 42]. For a T7 mutant to survive, it requires at
least one ECRNAP promoter within 850 bp of the entering
end of the genome. With six EcRNAP promoters out
of 72 internal genetic elements, there is a high probability
to place all these promoters after 850 bp. The probability for
these fatal configurations is approximately [(39 937 — 850)/
39 937]° ~ 88%. This value agrees well with our simulation
results (~82%). Therefore, failure to enter the cell may
account for the failure for the majority of T7 random
genomes to grow. If T7 enters the cell successfully, it
may still fail to grow if at least one of its 23 essential
genes is upstream of all promoters.

Parametric and genomic perturbations may be considered
in terms of the extent of their impact on the underlying
T7 reaction network. Most perturbations in single or
multiple parameters cause quantitative rather than quali-
tative changes in the growth of the virus. They are in
a sense ‘anticipated’ because biological mechanisms
exist to create them — point mutations could result in
changes in promoter activities or kinetic parameters of
regulatory proteins. These changes can be buffered by
the design of T7. For example, a major reason that
single or multiple changes in promoter strengths caused
little effects (Figs. 1 and 3) is likely because of redundancy
of these promoters. Most T7 genes are transcribed from
15 T7 promoters (Fig. S1). If one or more of these 15
promoters (but not all) are inactivated, the remaining
promoters still provide sufficient transcripts for T7 to
survive (Fig. 1a).

In contrast, random perturbations of the T7 genome
organisation may qualify as “unanticipated’ perturbations,
because they disrupt the underlying structure of the T7
genetic network and such perturbations have not been
found in naturally occurring phage. In this scenario,
changes to T7 growth are no longer limited to the rates or
the extent of some reactions (e.g. transcription of a gene).
Instead, the structural disruption can drastically change
temporal sequence of phage processes or prevent reactions
that are essential for growth. For instance, a genomic
mutant may fail to grow because all essential genes are pro-
moter-less. The importance of the underlying network struc-
ture for proper functioning of a biological system is further
illustrated by optimality of the wild-type T7 genome in the
finite environment. For T7, the wild-type arrangement of
the genetic elements will lead to efficient scheduling and
timing of various cellular events involved in viral infection,
which will, in turn, result in efficient use of resources pro-
vided in the finite environment (Fig. 5a) and thus nearly
optimal growth.

Our predictions on fitness of shuffled T7 genomes can
potentially be tested experimentally. For instance, recent
work has generated a number of T7 variants with a few
genes relocated to ectopic positions [37, 43]. Furthermore,
progress has been made to ‘refactor’ the T7 genome so that
it will be more amendable to large-scale rearrangement [44].

4.2 Optimality and efficiency

A distinct property of T7 is that growth of the wild-type is
close to optimal in the finite environment. Relative to
mutants, the wild-type T7 performs much better in the
finite environment than in the infinite environment.
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Fig.5 Correlation of growth rates and efficiency for the 100 000
mutants with randomly permuted genomes

a Finite host environment

b Infinite host environment

Each dot represents a mutant. Both efficiency and growth rates were
normalised with respect to the corresponding wild-type values. A
linear fit (indicated by lines) gives an R value of 0.86 (finite environ-
ment) and 0.35 (infinite environment). The wild-type is indicated by a
asterisk symbol

Regardless the type of mutations, most random mutants
that outgrew the wild-type in the infinite environment
grew much more slowly than the wild-type in the finite
environment (Figs. 2 and 3). The optimality of wild-type
T7 is particularly evident in its genomic structure: no
mutants with random genomes grew faster than the
wild-type in the finite environment, and only ~5% did so
in the infinite environment. Results from the previous
study (Fig. 5) [37], where 2.8% of permutation mutants
grew faster than the wild-type, are consistent with current
observations. In the previous study, the host environment
was a ‘hybrid’ of the two environments presented here:
those simulations supplied infinite pools of nucleoside
triphosphates, amino acids and ribosomes, but used finite
levels of RNAPs (corresponding to a host growth rate of
1.0 doublings/h). The difference in growth environment
and use of a different growth metrics may have caused
differences in contours of fitness distributions. Despite
these differences, however, an emerging picture from
current and previous results is that faster growing
mutants are more likely to occur with increasing amounts
of resources.

Optimality of wild-type T7 in the finite environment
probably results from its high efficiency in utilising
limited resources. Figs. 4a and 5a indicate (a) the wild-
type is more efficient than most mutants and (b) the
fitness correlates well with efficiency in the finite environ-
ment (particularly for mutants with random genomes).
The correlation makes intuitive sense. With limited
resources, excessive production of some components will
come at the expense of the others. This may reduce
fitness if these other components are critical for growth.
In the infinite environment, however, the phage is not

50

penalised for being ‘wasteful” in producing any of its pro-
ducts to achieve fast growth. Thus, growth rates do not cor-
relate well with high efficiencies, as is evident in Figs. 45
and 5b. In fact, many faster-growing mutants are much
less efficient than the wild-type and would become less fit
in the finite environment.

Our findings here, that phage can pay a fitness penalty for
being inefficient, gives new perspective to previous results.
Several gene 1 (encoding T7TRNAP) ectopic mutants that
put gene 1 under control of a T7RNAP promoter were pre-
dicted to grow faster than the wild-type, because of the for-
mation of a positive feedback in the mutants where
T7RNAP drives its own synthesis [37]. This prediction
follows from the assumption that infinite resources were
available, such that excessive T7TRNAP production would
not be detrimental to growth. Revised simulations using a
host with finite resources, however, indicated that such
ectopic mutants would grow more slowly than the wild-
type: excessive synthesis of T7RNAP could lead to poor
allocation of translation resources, resulting in a reduction
in synthesis of T7 late proteins essential for progeny for-
mation [45]. The new result is more consistent with exper-
imental observation [37]. Similar behaviour has been
observed in computational analysis of phase Qf infection
cycle [39], which is found to be efficient in utilising energy.

Our analysis underscores the potential importance of the
growth environment in shaping the design of an organism
during evolution. Specifically, T7 relies on the host cell
for its growth and a ‘realistic’ host cell provides finite
resources. During evolution, T7 could have adapted for
such finite environments, leading to high efficiency in utilis-
ing finite resources and overall optimality in growth rate.
Consistent with this notion, further simulations indicate
that wild-type T7 is nearly optimal in other realistic host
environments corresponding to E. coli growth rates
ranging from 0.5 to 2.0 doublings/h (see Table S1 for
dependence of host resources on the growth rate).

4.3 Caveats

Although wild-type T7 grows much faster and is more effi-
cient in utilising resources than most mutants, it is not
always the fastest or the most efficient, even in the finite
environment (Figs. 1-3). Why do faster-growing and
more efficient mutants appear? We suggest several mechan-
isms, which can be individually tested experimentally or
computationally.

First, the host environment we adopted in this work
represented a host cell growing under standard laboratory
conditions [36] (see SOM for more details). Such a host
cell is likely different from those growing in nature, and
T7 could have been more optimised for naturally existing
hosts. Consistent with this notion, recent work shows
that the wild-type T7 can be quickly adapted to a new
growth environment, resulting in increased fitness [43]. In
addition, T7 may have evolved to be nearly optimal
in different environments instead of being optimal in a
single environment. That is, the wild-type T7 may be a
‘generalist’, whereas faster-growing mutants are ‘special-
ists’: they grow faster only under special conditions
(e.g. in an environment with excessive resources). Further
simulation results support this notion: the wild-type T7 is
always close to optimal under a wide spectrum of realistic
growth environments, corresponding to host cells with
different growth rates (data not shown).

Secondly, the data and mechanisms incorporated in the
model contain various degrees of uncertainty. In construct-
ing the model, we have been faithful to the literature data
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and have not adjusted parameters to fit existing experimen-
tal data. However, potential uncertainties in the parameters
may lead to biased representation of the ‘wild-type’. The
wild-type T7 defined in our model may be a variant, that
is similar but not identical to the wild-type that the model
aims to represent. In addition, we have assumed the two
types of perturbations to be independent, although they
may well be coupled, at least in laboratory conditions
where T7 mutants were artificially evolved. A T7 mutant
deleted for its lysin gene partially recovered its fitness by
acquiring mutations in other genes [46]. Another T7
mutant with an ectopic RNAP gene moderately increased
fitness by acquiring mutations in the early transcription ter-
minator [43]. These examples indicate that perturbations to
the genomic structure can be compensated by changes in
kinetic parameters. With limited knowledge of the relation-
ship between a gene sequence and its protein function, these
types of interactions are difficult to anticipate or to
implement in a kinetic model a priori.

Finally, as argued in the ‘quasi-species’ theory, a variant
that is selected by evolution may not be the fittest; it can be
sub-optimal and still win the race if it is ‘supported’ by its
mutational neighbours with which it gives highest average
fitness [47—49]. Our results seem to be consistent with
this notion: most subtle mutations with respect to par-
ameters or genomic structure lead to mutants with growth
rates comparable to the wild-type value.
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